A weight analysis-based wrapper approach to neural nets feature subset selection

نویسندگان

  • Dietrich Schuschel
  • Chun-Nan Hsu
چکیده

This paper presents a novel attribute selection approach for backprop neural networks. Previously, an attribute selection technique known as the wrapper model was shown effective for decision trees induction. However, it is prohibitively expensive when applied to real-world neural net training characterized by large volumes of data and many attribute choices. Our approach incorporates a weight analysis based heuristic called ANNIGMA to direct the search in the wrapper model and allows effective attribute selection feasible for neural net applications. Experimental results on standard data sets show that this approach can efficiently reduce the number of inputs while maintaining or even improving the accuracy. We also report two sucessful applications of our approach in the helicopter maintenance applications. Subject Areas: Neural networks, Machine Learning

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets

Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...

متن کامل

Developing a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression

Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...

متن کامل

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

The ANNIGMA-wrapper approach to fast feature selection for neural nets

This paper presents a novel feature selection approach for backpropagation neural networks (NNs). Previously, a feature selection technique known as the wrapper model was shown effective for decision trees induction. However, it is prohibitively expensive when applied to real-world neural net training characterized by large volumes of data and many feature choices. Our approach incorporates a w...

متن کامل

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998